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I n an era of dramatic discoveries in neuroscience and genetics, it is likely that many popular
theories and formulations about mental illness will need to be revised, if not discarded. The
“neurodevelopmental hypothesis” is one of the popular theories about the origins of schizo-
phrenia, which posits that abnormalities of early brain development increase risk for the

subsequent emergence of the clinical syndrome.1-3 An early piece of evidence in support of this
hypothesis was the apparent lack of progression of cerebral ventricular enlargement observed with
computed tomography during illness.4-9 An important assumption of the neurodevelopmental hy-
pothesis is that the putative primary pathologic condition of the brain is a reflection of abnormali-
ties of early development. The neurodevelopmental hypothesis thus assumes that developmental
neuropathologic conditions should arrest early in life and not continue to progress. The com-
puted tomography results showing no apparent progression seemed consistent with this assump-
tion. However, a recent series of magnetic resonance imaging (MRI) studies has called into ques-
tion this assumption, by revealing changes in measurements of brain structures over short periods
in patients who have been ill for varying durations and at various stages of life. These recent stud-
ies10-14 have generated enthusiasm for a “neurodegenerative hypothesis,” harkening back to pro-
posals of Kraepelin and other neuropathologists during the first quarter of the 20th century that
there is destruction of neural tissue associated with psychosis. In fact, results of MRI measure-
ments have been cited as support for a much broader conceptual revolution in psychiatry, a “neu-
rotoxicity hypothesis” for many psychiatric illnesses, including affective disorders15,16 and anxiety
and stress disorders17-19 and even jet lag.20 This recent trend has been bolstered by basic discover-
ies about the adaptability of neuronal connections21 and the viability and reproducibility of neu-
rons in the adult brain (eg, apoptosis and neurogenesis).22,23 These developments have led some to
opine that the neurodegenerative hypothesis of schizophrenia may have been unjustly overshad-
owed by the ascendancy of the neurodevelopmental hypothesis.24

While we are uncertain what constitutes
appropriate relations between these 2 hy-
potheses, we are concerned that enthusi-
asm for the notion of neurodegeneration
in schizophrenia (and in other psychiat-
ric disorders) has outpaced the strength
of the evidence. Quantitative measure-
ments of cerebrospinal fluid spaces and
tissue volumes on an MRI scan cannot
establish that the brain has developed

abnormally, nor can they establish that tis-
sue has degenerated. If the principal evi-
dence for abnormal brain development in
schizophrenia rested on the interpreta-
tion of computed tomography or MRI vol-
ume measurements, this hypothesis would
not deserve serious consideration. The evi-
dence that abnormal brain development
may be a risk factor for schizophrenia
comes from several domains, including:
(1) abnormalities of early motor and
cognitive development and histories of
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obstetrical adversity, (2) absence of
evidence of neurodegeneration in
postmortem tissue studies, and (3)
association of developmental patho-
logic conditions with adult emer-
gence of psychosis and related phe-
nomena in animal and neurological
models.1-3 This represents a sub-
stantial body of research relating
developmental compromise to sub-
sequent schizophrenia and substan-
tiating the neurobiological plausibil-
ity of this formulation. However, all
of this evidence would be moot if neu-
rodegeneration were apparent in post-
mortem studies. In contrast to pre-
dictions of a neurodegenerative
hypothesis, the schizophrenic brain
typically does not show loss of corti-
cal neurons, gliosis, or any consis-
tent evidence of degenerating or de-
generated neurons.25-27 It is often
stated in the psychiatric literature that

these negative findings are consis-
tent with apoptosis.13,14,24 The basis for
this assertion is obscure, perhaps aris-
ing from research on apoptosis in
early brain development or in non–
central nervous system cancers (some
of which are associated with cell death
without inflammation) and from in-
vestigations of experimental excito-
toxicity that were of short dura-
tion.28

Although apoptosis in early
brain development does not typi-
cally initiate molecular activation
of glia (although it may29), in most
pathologic brain conditions associ-
ated with apoptosis—including epi-
lepsy,30experimentalexcitotoxicity,31,32

normal aging,33 alcohol toxicity,34,35

steroidtoxicity,36 Alzheimerdisease,37

and many others—astroglial activa-
tion is prominent.28,30,38-42 Moreover,
in conditions associated with loss of

neurons and with apoptosis, the
neurons and glia that survive and
those that are dying increase expres-
sion of genes and proteins that are
aimed at molecular compensation
andrestorationorare involved incell
suicide.43,44 These changes are char-
acteristically not seen in brain tissue
of patients with schizophrenia.43,45

Much has been made of the lack of
gliosis in the schizophrenic brain
as failing to support neurodegen-
erative hypotheses, but it is the lack
of expression of genes involved in
cellular responses to injury and to
DNA fragmentation that most mili-
tates against neurotoxicity and neu-
ronal destruction hypotheses. Fur-
thermore, the sine qua non of apop-
tosis is cell death, and diminished
populations of cortical neurons are
generally not found in tissue, in-
cludingthatofolderpatientswhohave

Studies Showing Morphometric Changes

Investigators
Average Age of

First Scan (years)
Average Length

Follow Up (years) Brain Region Showing Progressive Change
Maximum %

Change (per Year)

DeLisi, et al, 1992, 1995,
1997, and 1998

26.4 1, 4, 4.7 Left Lateral Ventricle
Left and Right Cerebral Hemispheres
Right Cerebellum
Corpus Callosum (Isthmus)

(+) 3.0
(−) 1.42 (Right)
(−) 2.2
(−) 1.14

Rapaport et al, 1997 14.8 2 Total Cerebrum
Lateral Ventricles and VBR (Left�Right)
Caudate
Globus Pallidus
Thalamic Area

(−) 2.58
(+) 9.7
(−) 4.1
(−) 9.9
(−) 7.1

Jacobsen et al, 1998 15.2 2 Total Cerebrum
Right Temporal Lobe
Superior Temporal Gyrus (Total)
Superior Temporal Gyrus (Posterior)
Right Superior Temporal Gyrus (Anterior)
Left Hippocampus

(−) 2.30
(−) 4.15
(−) 3.7
(−) 4.3
(−) 3.2
(−) 7.15

Nair et al, 1997 31.3 2 Lateral Ventricle (+) 12.48

Garver et al, 2000 35.8 2.6 None

Gur et al, 1998 29.2 2.5 Frontal Lobe (Left�Right)
Temporal Lobe (Left�Right)

(−) 4.2 (Left)
(−) 3.4 (Left)

Davis et al, 1998 39.5 5.1 VBR (Left�Right)
in Kraeplinian patients

(+) 3.3

Lieberman et al, 2001 26 1.5 Cerebral cortex in poor outcome patients
Total Ventricles in poor outcome patients

(−) 0.42 (females)
(−) 5.4 (females)

Mathalon et al, 2001 39.4 3.3 Prefrontal Sulci
Right Prefrontal Gray
Right Frontal Sulci
Left Frontal Gray
Posterior Superior Temporal Sulci
Posterior Superior Temporal Gray
Left Lateral Ventricle

(+) 6.63 (Left)
(−) 2.12
(−) 2.71
(−) 1.72
(−) 9.65 (Left)
(+) 3.35 (Right)
(+) 12.96
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suffered psychotic symptoms all of
their adult lives.25-27,46 Therefore, al-
though the lack, to date, of neurode-
generativesigns inpostmortemtissue
does not rule out tissue damage, it
raises the bar for believing other evi-
dence that neurodegeneration has
taken place. At some point in the dis-
quisition, for neurodegeneration to
be a plausible scenario, sequelae of
neurodegenerationmustbeobservable
at the tissue level.

The evidence said to support the
notion of neurodegeneration, al-
though not present at the tissue level,
is based on 2 phenomena. First is the
apparent progression of clinical as-
pects of the syndrome in some pa-
tients, such as personality deteriora-
tion, dilapidation, and treatment
resistance.13 Curiously, in longitudi-
nal studies of cognitive function (a
potentially direct measure of the

integrity of cortical neuronal sys-
tems), most of the data do not sup-
port progression, at least during about
the first 20 years of illness (reviewed
in Rund47). Many unfortunate hu-
mancircumstancesandbehaviorsap-
pear to get worse over time in some
individuals (eg, joblessness and
homelessness), without necessarily
implicatingdegenerationofbrain tis-
sue. Although unemployment for a
long period may in fact be associated
with dynamic changes in synaptic
architecture—just as learning new
behaviors and habits may involve
changes in the connections made
between cells—these presumably
are plastic modifications (ie, poten-
tially reversible), not toxic degenera-
tions (which usually imply irrevers-
ibility).

The second line of evidence for
neurodegeneration is progressive

changes in volume measurements in
structural MRI studies. This litera-
ture is selectively abstracted in the
Table. Although there are some stud-
ies24,48-56,58 that find evidence of
changes in MRI volume measure-
ments, the results vary considerably
among these positive studies. Some
changes, eg, in temporal lobes, fron-
tal lobes, and cerebrospinal fluid
spaces, have been found in more than
1 study. However, no 2 studies have
found the same pattern of changes
across all of these measures, and each
study appears to have its own unique
combination of results. Moreover, al-
though correlations between changes
in symptoms and in measurements
have been reported in a few stud-
ies,51,52,54,55 these also vary, and, re-
markably, in most studies, patients
have improved symptomatically
while their MRI changes have ap-

Brain Region Showing
No Change or Opposite Change Correlation with Clinical Change

Right and Left Temporal Lobes
Right and Left Superior Temporal Gyri
Right and Left Hippocampus/Amygdala
Right and Left Caudate

No significant correlation between clinical measures and changes in ventricle or cerebral hemisphere
volume; overall, symptoms improved in patients

None Overall, symptoms improved in patients

Left Temporal Lobe
Left Superior Temporal Gyrus (Anterior)
Left and Right Amygdala
Right Hippocampus

No significant correlation between temporal lobe volume decrease and hallucinations, delusions, or
negative symptoms; overall, symptoms improved in patients

None Not reported

Lateral ventricle
Total Brain

Worsening of symptoms correlated with decreased ventricular and increased total brain volume

Whole Brain
Cerebral Spinal Fluid Spaces

Improvement in most symptoms correlated with decreased frontal and temporal lobe volumes in
previously treated patients; overall, symptoms improved in patients

None No significant correlation between change in ventricle-to-brain ratio and negative symptoms in
non-Kraeplinian patients

Caudate Nuclei in all patients
Hippocampus in all patients
Cerebral Cortex in all patients
Total Ventricles in all patients
Total Ventricles in good outcome patients
Cerebral Cortex in good outcome patients
Hippocampus in poor outcome patients

Total ventricle and cerebral cortex increase correlated with poor outcome; cerebral cortex and
hippocampus increase correlated with good outcome

Left Prefrontal Gray
Left Frontal Sulci
Right Frontal Gray
Anterior Superior Temporal Sulci
Right Anterior Superior Temporal Gray

Overall, symptoms improved in patients
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peared to progress. This is hardly
what would be predicted as a result
of progressive loss of brain tissue; it
is difficult to conceive of neurode-
generation being associated with
clinical improvement.

Further concerns about infer-
ring neurodegeneration in schizo-
phrenia from MRI volume measure-
ments are raised by comparisons
with neurological conditions in
which neurodegeneration is estab-
lished. The magnitude of the changes
reported in the studies purporting
to show neurodegeneration in
schizophrenia is not trivial. For ex-
ample, Mathalon et al24 claim a 2%
per year reduction in frontal gray
matter in patients with schizophre-
nia who have been ill for a mean of
15 years before they were studied.
This degree of change is near the
range reported in Alzheimer dis-
ease for the hippocampus, a struc-
ture that is markedly degenerated in
this illness.59 Other investigations of
schizophrenia have reported vol-
ume loss in the hippocampus of
greater magnitude, as much as 7%
per year,54 yet postmortem studies
of schizophrenia have had diffi-
culty uncovering evidence of even
slight hippocampal shrinkage.27,43

The mesial area of the thalamus was
shrinking at the rate of 7% per year
in a study52 of adolescent patients
with already chronic disease. Pre-
sumably, the tissue loss would have
to spontaneously arrest fairly soon,
or these patients would be virtually
thalamusless by middle age. In a re-
cent study24 of patients in their fifth
decade of life, the left lateral ven-
tricles were increasing at a rate of
13% per year, thus doubling in size
every 8 years, again at a rate that is
seen in Alzheimer disease.60 In the
study52 of adolescent patients who
had been ill for several years, the rate
of ventricular volume change was
10% per year, translating into a dou-
bling period of 10 years. At this pace,
by the time a patient with schizophre-
nia reached age 60 years, there would
be little brain left. Although it has
been countered that the progress-
ive MRI changes in schizophrenia
may not be linear and may not oc-
cur throughout the course of ill-
ness,11,52,54 similar progressive changes
that have been reported in adoles-
cent patients with several years of dis-

ease,52,60 first-episode patients in their
20s,55 patients in their 40s,24 and pa-
tients in their 50s56 make this coun-
terargument unconvincing (unless
one concludes that the neurodegen-
eration only occurs during the few
years when patients are part of a Na-
tional Institute of Mental Health–
funded study). It is hard to imagine
how the magnitude and duration of
changes observed in MRI studies of
patients with schizophrenia could be
occurring as a neurodegenerative pro-
cess, whether by cell necrosis or apop-
tosis, without observable evidence of
neuronal loss and other related
changes in postmortem tissue.

If the MRI changes, which are
found at least in some studies, do not
reflect neurodegeneration, how might
they be explained? Variations in
MRI measurements can reflect differ-
ences in image acquisition and an-
alysis techniques, alterations in
neuronal and nonneuronal tissue
compartments, physiological alter-
ations in brain tissue (eg, changes in
tissue perfusion, fat, and water con-
tent), and changes in other chemical
constituents that make up living
brain.61 Indeed, numerous studies
have shown that changes in body
weight,62 alcohol intake,63,64 steroid
administration,65 and hormonal sta-
tus66 can rapidly produce changes in
MRI volume measurements, some of
greater magnitude than those re-
ported in the schizophrenia studies.
Recent findings that ventricular size
can alternatively increase, decrease,
and then increase again in the same
patients scanned repeatedly over a few
months suggest that such changes
may reflect physiological varia-
tions.51,57 A recent report67 claimed
that only 4 weeks of treatment with
lithium carbonate increases cortical
gray matter volume by 3%. Treat-
ment with paroxetine hydrochlo-
ride was reported to decrease tha-
lamic volume by 19% in 12 weeks.68

Neuroleptics also may rapidly change
brain volume,69 perhaps because of
changes in tissue perfusion, and many
studies70,71 have shown a relation-
ship between neuroleptic exposure
and basal ganglia volume change.

It is also conceivable that, in ad-
dition tophysiologicalvariations, the
MRI changes reflect some degree of
neuroplastic adaptations to the envi-
ronmentor to theexperienceofbeing

psychotic, perhaps reflected in less
abundant neuropil, as has been ob-
served inpostmortemtissue frompa-
tients with schizophrenia.26 Indeed,
investigationsofgeneandproteinex-
pressioninschizophreniasuggestthat
thereisdecreasedtranscriptionaldrive
related to various signal-processing
pathways.43 Thismayreflectenviron-
mental factors reducing theneuronal
information-processing load. These
factorsmayincludeunstimulatingen-
vironments,theeffectoflong-standing
diagnosisofachronicdisease,comor-
bidconditions(includingsmoking,al-
coholorotherdruguse,anduntreated
medicalproblems),andeffectsoflong-
term medication use. It has become
clearfromstudiesinexperimentalani-
mals that numerous environmental
factors have an effect on neuronal
plasticity and can be associated with
regression of dendrites and spines,
possibly reflecting reducedstimulus-
linkedgeneexpression. It is alsocon-
ceivable that a brain that processes
informationabnormally,perhapsbe-
cause of genetic and developmental
aberrations that may be factors in
schizophrenia, would make unique
plastic adaptations to environmen-
tal experience. These nondegenera-
tiveadaptations,however, arepoten-
tiallyreversible(aspartofhowabrain
does business with environmental
stimuli), in contrast to the implica-
tions of changes that reflect neuro-
degeneration.Although thepossibil-
ity of such plastic alterations in neu-
ronal connectivity is intriguing, it is
not clear that their magnitude would
be observable at the level of an MRI
measurement.Intheoftencitedstudy72

ofstress-associatedcellularchangesin
themonkeyhippocampus(oneof the
reports that launchedtheexperiential
neurotoxicity revolution), although
dramatic cytoarchitectural changes
weredescribed, including lossofneu-
rons and gliosis, there was no change
ingrosshippocampalvolume!More-
over, instudies73-75ofpatientswithepi-
lepsy, seizure frequency, a plausible
measure of neurotoxicity load, tends
nottocorrelatewithhippocampalvol-
ume reductions seen on MRI.

Based on these various consid-
erations, we caution investigators in-
volved in MRI studies and readers of
this literature to suspect the improb-
ability of the reported volume changes
as being related to neurodegenera-
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tion. In our view, the implications for
patients and families of such an ex-
treme interpretation of the data re-
quire more definitive evidence, which
cannot emerge from such MRI mea-
surements.
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